
PyAutoGUI Documentation

Al Sweigart

Jan 10, 2020

Contents

1 Examples 3

2 FAQ: Frequently Asked Questions 5

3 Fail-Safes 7
3.1 Installation . 8
3.2 Cheat Sheet . 8
3.3 Mouse Control Functions . 11
3.4 Keyboard Control Functions . 15
3.5 Message Box Functions . 17
3.6 Screenshot Functions . 18
3.7 Testing . 22
3.8 Roadmap . 22
3.9 pyautogui . 23

4 Indices and tables 25

i

ii

PyAutoGUI Documentation

PyAutoGUI lets your Python scripts control the mouse and keyboard to automate interactions with other applications.
The API is designed to be as simple. PyAutoGUI works on Windows, macOS, and Linux, and runs on Python 2 and
3.

To install with pip, run: pip install pyautogui

The source is available on: https://github.com/asweigart/pyautogui

PyAutoGUI has several features:

• Moving the mouse and clicking or typing in the windows of other applications.

• Sending keystrokes to applications (for example, to fill out forms).

• Take screenshots, and given an image (for example, of a button or checkbox), find it on the screen.

• Locate an application’s window, and move, resize, maximize, minimize, or close it (Windows-only, currently)

• Display message boxes for user interaction while your GUI automation script runs.

For a quick example of what PyAutoGUI is capable of, here’s a YouTube video of a bot automatically playing the
game Sushi Go Round. The bot watches the game’s application window, searching for images of sushi orders. When
it finds one, it clicks the buttons for the sushi ingredients to complete the order. It also clicks the countertop to collect
any finished plates. The bot can finish all seven days of the game, though many human players achieve higher scores
than the bot.

Contents 1

https://github.com/asweigart/pyautogui
https://www.youtube.com/watch?v=lfk_T6VKhTE
https://www.youtube.com/watch?v=lfk_T6VKhTE

PyAutoGUI Documentation

2 Contents

CHAPTER 1

Examples

>>> import pyautogui

>>> screenWidth, screenHeight = pyautogui.size() # Get the size of the primary
→˓monitor.

>>> currentMouseX, currentMouseY = pyautogui.position() # Get the XY position of the
→˓mouse.

>>> pyautogui.moveTo(100, 150) # Move the mouse to XY coordinates.

>>> pyautogui.click() # Click the mouse.
>>> pyautogui.click(100, 200) # Move the mouse to XY coordinates and click it.
>>> pyautogui.click('button.png') # Find where button.png appears on the screen and
→˓click it.

>>> pyautogui.move(0, 10) # Move mouse 10 pixels down from its current position.
>>> pyautogui.doubleClick() # Double click the mouse.
>>> pyautogui.moveTo(500, 500, duration=2, tween=pyautogui.easeInOutQuad) # Use
→˓tweening/easing function to move mouse over 2 seconds.

>>> pyautogui.write('Hello world!', interval=0.25) # type with quarter-second pause
→˓in between each key
>>> pyautogui.press('esc') # Press the Esc key. All key names are in pyautogui.
→˓KEY_NAMES

>>> pyautogui.keyDown('shift') # Press the Shift key down and hold it.
>>> pyautogui.press(['left', 'left', 'left', 'left']) # Press the left arrow key 4
→˓times.
>>> pyautogui.keyUp('shift') # Let go of the Shift key.

>>> pyautogui.hotkey('ctrl', 'c') # Press the Ctrl-C hotkey combination.

>>> pyautogui.alert('This is the message to display.') # Make an alert box appear and
→˓pause the program until OK is clicked.

3

PyAutoGUI Documentation

This example drags the mouse in a square spiral shape in MS Paint (or any graphics drawing program):

>>> distance = 200
>>> while distance > 0:

pyautogui.drag(distance, 0, duration=0.5) # move right
distance -= 5
pyautogui.drag(0, distance, duration=0.5) # move down
pyautogui.drag(-distance, 0, duration=0.5) # move left
distance -= 5
pyautogui.drag(0, -distance, duration=0.5) # move up

The benefit of using PyAutoGUI, as opposed to a script that directly generates the image file, is that you can use the
brush tools that MS Paint provides.

4 Chapter 1. Examples

CHAPTER 2

FAQ: Frequently Asked Questions

Send questions to al@inventwithpython.com

Q: Can PyAutoGUI work on Android, iOS, or tablet/smartphone apps.

A: Unfortunately no. PyAutoGUI only runs on Windows, macOS, and Linux.

Q: Does PyAutoGUI work on multi-monitor setups.

A: No, right now PyAutoGUI only handles the primary monitor.

Q: Does PyAutoGUI do OCR?

A: No, but this is a feature that’s on the roadmap.

Q: Can PyAutoGUI do keylogging, or detect if a key is currently pressed down?

A: No, PyAutoGUI cannot do this currently.

5

mailto:al@inventwithpython.com

PyAutoGUI Documentation

6 Chapter 2. FAQ: Frequently Asked Questions

CHAPTER 3

Fail-Safes

Like the enchanted brooms from the Sorcerer’s Apprentice programmed to keep filling (and then overfilling) the bath
with water, a bug in your program could make it go out of control. It’s hard to use the mouse to close a program if the
mouse cursor is moving around on its own.

As a safety feature, a fail-safe feature is enabled by default. When a PyAutoGUI function is called, if the mouse is in
any of the four corners of the primary monitor, they will raise a pyautogui.FailSafeException. There is a
one-tenth second delay after calling every PyAutoGUI functions to give the user time to slam the mouse into a corner
to trigger the fail safe.

You can disable this failsafe by setting pyautogui.FAILSAFE = False. I HIGHLY RECOMMEND YOU
DO NOT DISABLE THE FAILSAFE.

Contents:

7

PyAutoGUI Documentation

3.1 Installation

To install PyAutoGUI, install the pyautogui package from PyPI by running pip install pyautogui (on
Windows) or pip3 install pyautogui (on macOS and Linux). (On macOS and Linux, pip refers to Python
2’s pip tool.)

OS-specific instructions are below.

NOTE: As of October 2019, the Pillow module doesn’t support Python 3.8. PyAutoGUI currently depends on
this module for its screenshot capabilities.

3.1.1 Windows

On Windows, you can use the py.exe program to run the latest version of Python:

py -m pip install pyautogui

If you have multiply versions of Python installed, you can select which one with a command line argument to py. For
example, for Python 3.8, run:

py -3.8 -m pip install pyautogui

(This is the same as running pip install pyautogui.)

3.1.2 macOS

On macOS and Linux, you need to run python3:

python3 -m pip install pyautogui

If you are running El Capitan and have problems installing pyobjc try:

MACOSX_DEPLOYMENT_TARGET=10.11 pip install pyobjc

3.1.3 Linux

On macOS and Linux, you need to run python3:

python3 -m pip install pyautogui

On Linux, additionally you need to install the scrot application, as well as Tkinter:

sudo apt-get install scrot

sudo apt-get install python3-tk

sudo apt-get install python3-dev

PyAutoGUI install the modules it depends on, including PyTweening, PyScreeze, PyGetWindow, PymsgBox, and
MouseInfo.

3.2 Cheat Sheet

This is a quickstart reference to using PyAutoGUI. PyAutoGUI is cross-platform GUI automation module that works
on Python 2 & 3. You can control the mouse and keyboard as well as perform basic image recognition to automate
tasks on your computer.

8 Chapter 3. Fail-Safes

PyAutoGUI Documentation

All the keyword arguments in the examples on this page are optional.

>>> import pyautogui

PyAutoGUI works on Windows/Mac/Linux and on Python 2 & 3. Install from PyPI with pip install
pyautogui.

3.2.1 General Functions

>>> pyautogui.position() # current mouse x and y
(968, 56)
>>> pyautogui.size() # current screen resolution width and height
(1920, 1080)
>>> pyautogui.onScreen(x, y) # True if x & y are within the screen.
True

3.2.2 Fail-Safes

Set up a 2.5 second pause after each PyAutoGUI call:

>>> import pyautogui
>>> pyautogui.PAUSE = 2.5

When fail-safe mode is True, moving the mouse to the upper-left will raise a pyautogui.FailSafeException
that can abort your program:

>>> import pyautogui
>>> pyautogui.FAILSAFE = True

3.2.3 Mouse Functions

XY coordinates have 0, 0 origin at top left corner of the screen. X increases going right, Y increases going down.

>>> pyautogui.moveTo(x, y, duration=num_seconds) # move mouse to XY coordinates over
→˓num_second seconds
>>> pyautogui.moveRel(xOffset, yOffset, duration=num_seconds) # move mouse relative
→˓to its current position

If duration is 0 or unspecified, movement is immediate. Note: dragging on Mac can’t be immediate.

>>> pyautogui.dragTo(x, y, duration=num_seconds) # drag mouse to XY
>>> pyautogui.dragRel(xOffset, yOffset, duration=num_seconds) # drag mouse relative
→˓to its current position

Calling click() just clicks the mouse once with the left button at the mouse’s current location, but the keyword
arguments can change that:

>>> pyautogui.click(x=moveToX, y=moveToY, clicks=num_of_clicks, interval=secs_between_
→˓clicks, button='left')

The button keyword argument can be 'left', 'middle', or 'right'.

All clicks can be done with click(), but these functions exist for readability. Keyword args are optional:

3.2. Cheat Sheet 9

PyAutoGUI Documentation

>>> pyautogui.rightClick(x=moveToX, y=moveToY)
>>> pyautogui.middleClick(x=moveToX, y=moveToY)
>>> pyautogui.doubleClick(x=moveToX, y=moveToY)
>>> pyautogui.tripleClick(x=moveToX, y=moveToY)

Positive scrolling will scroll up, negative scrolling will scroll down:

>>> pyautogui.scroll(amount_to_scroll, x=moveToX, y=moveToY)

Individual button down and up events can be called separately:

>>> pyautogui.mouseDown(x=moveToX, y=moveToY, button='left')
>>> pyautogui.mouseUp(x=moveToX, y=moveToY, button='left')

3.2.4 Keyboard Functions

Key presses go to wherever the keyboard cursor is at function-calling time.

>>> pyautogui.typewrite('Hello world!\n', interval=secs_between_keys) # useful for
→˓entering text, newline is Enter

A list of key names can be passed too:

>>> pyautogui.typewrite(['a', 'b', 'c', 'left', 'backspace', 'enter', 'f1'],
→˓interval=secs_between_keys)

The full list of key names is in pyautogui.KEYBOARD_KEYS.

Keyboard hotkeys like Ctrl-S or Ctrl-Shift-1 can be done by passing a list of key names to hotkey():

>>> pyautogui.hotkey('ctrl', 'c') # ctrl-c to copy
>>> pyautogui.hotkey('ctrl', 'v') # ctrl-v to paste

Individual button down and up events can be called separately:

>>> pyautogui.keyDown(key_name)
>>> pyautogui.keyUp(key_name)

3.2.5 Message Box Functions

If you need to pause the program until the user clicks OK on something, or want to display some information to the
user, the message box functions have similar names that JavaScript has:

>>> pyautogui.alert('This displays some text with an OK button.')
>>> pyautogui.confirm('This displays text and has an OK and Cancel button.')
'OK'
>>> pyautogui.prompt('This lets the user type in a string and press OK.')
'This is what I typed in.'

The prompt() function will return None if the user clicked Cancel.

10 Chapter 3. Fail-Safes

PyAutoGUI Documentation

3.2.6 Screenshot Functions

PyAutoGUI uses Pillow/PIL for its image-related data.

On Linux, you must run sudo apt-get install scrot to use the screenshot features.

>>> pyautogui.screenshot() # returns a Pillow/PIL Image object
<PIL.Image.Image image mode=RGB size=1920x1080 at 0x24C3EF0>
>>> pyautogui.screenshot('foo.png') # returns a Pillow/PIL Image object, and saves
→˓it to a file
<PIL.Image.Image image mode=RGB size=1920x1080 at 0x31AA198>

If you have an image file of something you want to click on, you can find it on the screen with locateOnScreen().

>>> pyautogui.locateOnScreen('looksLikeThis.png') # returns (left, top, width,
→˓height) of first place it is found
(863, 417, 70, 13)

The locateAllOnScreen() function will return a generator for all the locations it is found on the screen:

>>> for i in pyautogui.locateAllOnScreen('looksLikeThis.png')
...
...
(863, 117, 70, 13)
(623, 137, 70, 13)
(853, 577, 70, 13)
(883, 617, 70, 13)
(973, 657, 70, 13)
(933, 877, 70, 13)

>>> list(pyautogui.locateAllOnScreen('looksLikeThis.png'))
[(863, 117, 70, 13), (623, 137, 70, 13), (853, 577, 70, 13), (883, 617, 70, 13), (973,
→˓ 657, 70, 13), (933, 877, 70, 13)]

The locateCenterOnScreen() function just returns the XY coordinates of the middle of where the image is
found on the screen:

>>> pyautogui.locateCenterOnScreen('looksLikeThis.png') # returns center x and y
(898, 423)

These functions return None if the image couldn’t be found on the screen.

Note: The locate functions are slow and can take a full second or two.

3.3 Mouse Control Functions

3.3.1 The Screen and Mouse Position

Locations on your screen are referred to by X and Y Cartesian coordinates. The X coordinate starts at 0 on the left side
and increases going right. Unlike in mathematics, the Y coordinate starts at 0 on the top and increases going down.

0,0 X increases -->
+---------------------------+
| | Y increases
| | |

(continues on next page)

3.3. Mouse Control Functions 11

PyAutoGUI Documentation

(continued from previous page)

| 1920 x 1080 screen | |
| | V
| |
| |
+---------------------------+ 1919, 1079

The pixel at the top-left corner is at coordinates 0, 0. If your screen’s resolution is 1920 x 1080, the pixel in the lower
right corner will be 1919, 1079 (since the coordinates begin at 0, not 1).

The screen resolution size is returned by the size() function as a tuple of two integers. The current X and Y
coordinates of the mouse cursor are returned by the position() function.

For example:

>>> pyautogui.size()
(1920, 1080)
>>> pyautogui.position()
(187, 567)

Here is a short Python 3 program that will constantly print out the position of the mouse cursor:

#! python3
import pyautogui, sys
print('Press Ctrl-C to quit.')
try:

while True:
x, y = pyautogui.position()
positionStr = 'X: ' + str(x).rjust(4) + ' Y: ' + str(y).rjust(4)
print(positionStr, end='')
print('\b' * len(positionStr), end='', flush=True)

except KeyboardInterrupt:
print('\n')

Here is the Python 2 version:

#! python
import pyautogui, sys
print('Press Ctrl-C to quit.')
try:

while True:
x, y = pyautogui.position()
positionStr = 'X: ' + str(x).rjust(4) + ' Y: ' + str(y).rjust(4)
print positionStr,
print '\b' * (len(positionStr) + 2),
sys.stdout.flush()

except KeyboardInterrupt:
print '\n'

To check if XY coordinates are on the screen, pass them (either as two integer arguments or a single tuple/list arguments
with two integers) to the onScreen() function, which will return True if they are within the screen’s boundaries
and False if not. For example:

>>> pyautogui.onScreen(0, 0)
True
>>> pyautogui.onScreen(0, -1)
False
>>> pyautogui.onScreen(0, 99999999)

(continues on next page)

12 Chapter 3. Fail-Safes

PyAutoGUI Documentation

(continued from previous page)

False
>>> pyautogui.size()
(1920, 1080)
>>> pyautogui.onScreen(1920, 1080)
False
>>> pyautogui.onScreen(1919, 1079)
True

3.3.2 Mouse Movement

The moveTo() function will move the mouse cursor to the X and Y integer coordinates you pass it. The None value
can be passed for a coordinate to mean “the current mouse cursor position”. For example:

>>> pyautogui.moveTo(100, 200) # moves mouse to X of 100, Y of 200.
>>> pyautogui.moveTo(None, 500) # moves mouse to X of 100, Y of 500.
>>> pyautogui.moveTo(600, None) # moves mouse to X of 600, Y of 500.

Normally the mouse cursor will instantly move to the new coordinates. If you want the mouse to gradually move to
the new location, pass a third argument for the duration (in seconds) the movement should take. For example:

>>> pyautogui.moveTo(100, 200, 2) # moves mouse to X of 100, Y of 200 over 2 seconds

(If the duration is less than pyautogui.MINIMUM_DURATION the movement will be instant. By default,
pyautogui.MINIMUM_DURATION is 0.1.)

If you want to move the mouse cursor over a few pixels relative to its current position, use the move() function. This
function has similar parameters as moveTo(). For example:

>>> pyautogui.moveTo(100, 200) # moves mouse to X of 100, Y of 200.
>>> pyautogui.move(0, 50) # move the mouse down 50 pixels.
>>> pyautogui.move(-30, 0) # move the mouse left 30 pixels.
>>> pyautogui.move(-30, None) # move the mouse left 30 pixels.

3.3.3 Mouse Drags

PyAutoGUI’s dragTo() and drag() functions have similar parameters as the moveTo() and move() functions.
In addition, they have a button keyword which can be set to 'left', 'middle', and 'right' for which mouse
button to hold down while dragging. For example:

>>> pyautogui.dragTo(100, 200, button='left') # drag mouse to X of 100, Y of 200
→˓while holding down left mouse button
>>> pyautogui.dragTo(300, 400, 2, button='left') # drag mouse to X of 300, Y of 400
→˓over 2 seconds while holding down left mouse button
>>> pyautogui.drag(30, 0, 2, button='right') # drag the mouse left 30 pixels over 2
→˓seconds while holding down the right mouse button

3.3.4 Tween / Easing Functions

Tweening is an extra feature to make the mouse movements fancy. You can probably skip this section if you don’t care
about this.

3.3. Mouse Control Functions 13

PyAutoGUI Documentation

A tween or easing function dictates the progress of the mouse as it moves to its destination. Normally when moving
the mouse over a duration of time, the mouse moves directly towards the destination in a straight line at a constant
speed. This is known as a linear tween or linear easing function.

PyAutoGUI has other tweening functions available in the pyautogui module. The pyautogui.easeInQuad
function can be passed for the 4th argument to moveTo(), move(), dragTo(), and drag() functions to have the
mouse cursor start off moving slowly and then speeding up towards the destination. The total duration is still the same
as the argument passed to the function. The pyautogui.easeOutQuad is the reverse: the mouse cursor starts
moving fast but slows down as it approaches the destination. The pyautogui.easeOutElastic will overshoot
the destination and “rubber band” back and forth until it settles at the destination.

For example:

>>> pyautogui.moveTo(100, 100, 2, pyautogui.easeInQuad) # start slow, end fast
>>> pyautogui.moveTo(100, 100, 2, pyautogui.easeOutQuad) # start fast, end slow
>>> pyautogui.moveTo(100, 100, 2, pyautogui.easeInOutQuad) # start and end fast,
→˓slow in middle
>>> pyautogui.moveTo(100, 100, 2, pyautogui.easeInBounce) # bounce at the end
>>> pyautogui.moveTo(100, 100, 2, pyautogui.easeInElastic) # rubber band at the end

These tweening functions are copied from Al Sweigart’s PyTweening module: https://pypi.python.org/pypi/
PyTweening https://github.com/asweigart/pytweening This module does not have to be installed to use the tweening
functions.

If you want to create your own tweening function, define a function that takes a single float argument between 0.0
(representing the start of the mouse travelling) and 1.0 (representing the end of the mouse travelling) and returns a
float value between 0.0 and 1.0.

3.3.5 Mouse Clicks

The click() function simulates a single, left-button mouse click at the mouse’s current position. A “click” is defined
as pushing the button down and then releasing it up. For example:

>>> pyautogui.click() # click the mouse

To combine a moveTo() call before the click, pass integers for the x and y keyword argument:

>>> pyautogui.click(x=100, y=200) # move to 100, 200, then click the left mouse
→˓button.

To specify a different mouse button to click, pass 'left', 'middle', or 'right' for the button keyword
argument:

>>> pyautogui.click(button='right') # right-click the mouse

To do multiple clicks, pass an integer to the clicks keyword argument. Optionally, you can pass a float or integer to
the interval keyword argument to specify the amount of pause between the clicks in seconds. For example:

>>> pyautogui.click(clicks=2) # double-click the left mouse button
>>> pyautogui.click(clicks=2, interval=0.25) # double-click the left mouse button,
→˓but with a quarter second pause in between clicks
>>> pyautogui.click(button='right', clicks=3, interval=0.25) ## triple-click the
→˓right mouse button with a quarter second pause in between clicks

As a convenient shortcut, the doubleClick() function will perform a double click of the left mouse button. It also
has the optional x, y, interval, and button keyword arguments. For example:

14 Chapter 3. Fail-Safes

https://pypi.python.org/pypi/PyTweening
https://pypi.python.org/pypi/PyTweening
https://github.com/asweigart/pytweening

PyAutoGUI Documentation

>>> pyautogui.doubleClick() # perform a left-button double click

There is also a tripleClick() function with similar optional keyword arguments.

The rightClick() function has optional x and y keyword arguments.

3.3.6 The mouseDown() and mouseUp() Functions

Mouse clicks and drags are composed of both pressing the mouse button down and releasing it back up. If you want
to perform these actions separately, call the mouseDown() and mouseUp() functions. They have the same x, y,
and button. For example:

>>> pyautogui.mouseDown(); pyautogui.mouseUp() # does the same thing as a left-
→˓button mouse click
>>> pyautogui.mouseDown(button='right') # press the right button down
>>> pyautogui.mouseUp(button='right', x=100, y=200) # move the mouse to 100, 200,
→˓then release the right button up.

3.3.7 Mouse Scrolling

The mouse scroll wheel can be simulated by calling the scroll() function and passing an integer number of “clicks”
to scroll. The amount of scrolling in a “click” varies between platforms. Optionally, integers can be passed for the the
x and y keyword arguments to move the mouse cursor before performing the scroll. For example:

>>> pyautogui.scroll(10) # scroll up 10 "clicks"
>>> pyautogui.scroll(-10) # scroll down 10 "clicks"
>>> pyautogui.scroll(10, x=100, y=100) # move mouse cursor to 100, 200, then scroll
→˓up 10 "clicks"

On OS X and Linux platforms, PyAutoGUI can also perform horizontal scrolling by calling the hscroll() function. For
example:

>>> pyautogui.hscroll(10) # scroll right 10 "clicks"
>>> pyautogui.hscroll(-10) # scroll left 10 "clicks"

The scroll() function is a wrapper for vscroll(), which performs vertical scrolling.

3.4 Keyboard Control Functions

3.4.1 The write() Function

The primary keyboard function is write(). This function will type the characters in the string that is passed. To add
a delay interval in between pressing each character key, pass an int or float for the interval keyword argument.

For example:

>>> pyautogui.write('Hello world!') # prints out "Hello world!"
→˓instantly
>>> pyautogui.write('Hello world!', interval=0.25) # prints out "Hello world!" with
→˓a quarter second delay after each character

You can only press single-character keys with write(), so you can’t press the Shift or F1 keys, for example.

3.4. Keyboard Control Functions 15

PyAutoGUI Documentation

3.4.2 The press(), keyDown(), and keyUp() Functions

To press these keys, call the press() function and pass it a string from the pyautogui.KEYBOARD_KEYS such
as enter, esc, f1. See KEYBOARD_KEYS.

For example:

>>> pyautogui.press('enter') # press the Enter key
>>> pyautogui.press('f1') # press the F1 key
>>> pyautogui.press('left') # press the left arrow key

The press() function is really just a wrapper for the keyDown() and keyUp() functions, which simulate pressing
a key down and then releasing it up. These functions can be called by themselves. For example, to press the left arrow
key three times while holding down the Shift key, call the following:

>>> pyautogui.keyDown('shift') # hold down the shift key
>>> pyautogui.press('left') # press the left arrow key
>>> pyautogui.press('left') # press the left arrow key
>>> pyautogui.press('left') # press the left arrow key
>>> pyautogui.keyUp('shift') # release the shift key

To press multiple keys similar to what write() does, pass a list of strings to press(). For example:

>>> pyautogui.press(['left', 'left', 'left'])

Or you can set how many presses left:

>>> pyautogui.press('left', presses=3)

To add a delay interval in between each press, pass an int or float for the interval keyword argument.

3.4.3 The hotkey() Function

To make pressing hotkeys or keyboard shortcuts convenient, the hotkey() can be passed several key strings which
will be pressed down in order, and then released in reverse order. This code:

>>> pyautogui.hotkey('ctrl', 'shift', 'esc')

. . . is equivalent to this code:

>>> pyautogui.keyDown('ctrl')
>>> pyautogui.keyDown('shift')
>>> pyautogui.keyDown('esc')
>>> pyautogui.keyUp('esc')
>>> pyautogui.keyUp('shift')
>>> pyautogui.keyUp('ctrl')

To add a delay interval in between each press, pass an int or float for the interval keyword argument.

3.4.4 KEYBOARD_KEYS

The following are the valid strings to pass to the press(), keyDown(), keyUp(), and hotkey() functions:

16 Chapter 3. Fail-Safes

PyAutoGUI Documentation

['\t', '\n', '\r', ' ', '!', '"', '#', '$', '%', '&', "'", '(',
')', '*', '+', ',', '-', '.', '/', '0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', ':', ';', '<', '=', '>', '?', '@', '[', '\\', ']', '^', '_', '`',
'a', 'b', 'c', 'd', 'e','f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o',
'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '{', '|', '}', '~',
'accept', 'add', 'alt', 'altleft', 'altright', 'apps', 'backspace',
'browserback', 'browserfavorites', 'browserforward', 'browserhome',
'browserrefresh', 'browsersearch', 'browserstop', 'capslock', 'clear',
'convert', 'ctrl', 'ctrlleft', 'ctrlright', 'decimal', 'del', 'delete',
'divide', 'down', 'end', 'enter', 'esc', 'escape', 'execute', 'f1', 'f10',
'f11', 'f12', 'f13', 'f14', 'f15', 'f16', 'f17', 'f18', 'f19', 'f2', 'f20',
'f21', 'f22', 'f23', 'f24', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9',
'final', 'fn', 'hanguel', 'hangul', 'hanja', 'help', 'home', 'insert', 'junja',
'kana', 'kanji', 'launchapp1', 'launchapp2', 'launchmail',
'launchmediaselect', 'left', 'modechange', 'multiply', 'nexttrack',
'nonconvert', 'num0', 'num1', 'num2', 'num3', 'num4', 'num5', 'num6',
'num7', 'num8', 'num9', 'numlock', 'pagedown', 'pageup', 'pause', 'pgdn',
'pgup', 'playpause', 'prevtrack', 'print', 'printscreen', 'prntscrn',
'prtsc', 'prtscr', 'return', 'right', 'scrolllock', 'select', 'separator',
'shift', 'shiftleft', 'shiftright', 'sleep', 'space', 'stop', 'subtract', 'tab',
'up', 'volumedown', 'volumemute', 'volumeup', 'win', 'winleft', 'winright', 'yen',
'command', 'option', 'optionleft', 'optionright']

3.5 Message Box Functions

PyAutoGUI makes use of the message box functions in PyMsgBox to provide a cross-platform, pure Python way to
display JavaScript-style message boxes. There are four message box functions provided:

3.5.1 The alert() Function

>>> alert(text='', title='', button='OK')

Displays a simple message box with text and a single OK button. Returns the text of the button clicked on.

3.5.2 The confirm() Function

>>> confirm(text='', title='', buttons=['OK', 'Cancel'])

Displays a message box with OK and Cancel buttons. Number and text of buttons can be customized. Returns the text
of the button clicked on.

3.5.3 The prompt() Function

>>> prompt(text='', title='' , default='')

Displays a message box with text input, and OK & Cancel buttons. Returns the text entered, or None if Cancel was
clicked.

3.5. Message Box Functions 17

PyAutoGUI Documentation

3.5.4 The password() Function

>>> password(text='', title='', default='', mask='*')

Displays a message box with text input, and OK & Cancel buttons. Typed characters appear as *. Returns the text
entered, or None if Cancel was clicked.

3.6 Screenshot Functions

PyAutoGUI can take screenshots, save them to files, and locate images within the screen. This is useful if you have a
small image of, say, a button that needs to be clicked and want to locate it on the screen. These features are provided
by the PyScreeze module, which is installed with PyAutoGUI.

Screenshot functionality requires the Pillow module. OS X uses the screencapture command, which comes
with the operating system. Linux uses the scrot command, which can be installed by running sudo apt-get
install scrot.

3.6.1 Special Notes About Ubuntu

Unfortunately, Ubuntu seems to have several deficiencies with installing Pillow. PNG and JPEG support are not in-
cluded with Pillow out of the box on Ubuntu. The following links have more information: https://stackoverflow.
com/questions/7648200/pip-install-pil-e-tickets-1-no-jpeg-png-support http://ubuntuforums.org/showthread.php?t=
1751455

3.6.2 The screenshot() Function

Calling screenshot() will return an Image object (see the Pillow or PIL module documentation for details).
Passing a string of a filename will save the screenshot to a file as well as return it as an Image object.

>>> import pyautogui
>>> im1 = pyautogui.screenshot()
>>> im2 = pyautogui.screenshot('my_screenshot.png')

On a 1920 x 1080 screen, the screenshot() function takes roughly 100 milliseconds - it’s not fast but it’s not slow.

There is also an optional region keyword argument, if you do not want a screenshot of the entire screen. You can
pass a four-integer tuple of the left, top, width, and height of the region to capture:

>>> import pyautogui
>>> im = pyautogui.screenshot(region=(0,0, 300, 400))

3.6.3 The Locate Functions

NOTE: As of version 0.9.41, if the locate functions can’t find the provided image, they’ll raise
ImageNotFoundException instead of returning None.

You can visually locate something on the screen if you have an image file of it. For example, say the calculator app
was running on your computer and looked like this:

18 Chapter 3. Fail-Safes

https://stackoverflow.com/questions/7648200/pip-install-pil-e-tickets-1-no-jpeg-png-support
https://stackoverflow.com/questions/7648200/pip-install-pil-e-tickets-1-no-jpeg-png-support
http://ubuntuforums.org/showthread.php?t=1751455
http://ubuntuforums.org/showthread.php?t=1751455

PyAutoGUI Documentation

You can’t call the moveTo() and click() functions if you don’t know the exact screen coordinates of where the
calculator buttons are. The calculator can appear in a slightly different place each time it is launched, causing you to
re-find the coordinates each time. However, if you have an image of the button, such as the image of the 7 button:

. . . you can call the locateOnScreen('calc7key.png') function to get the screen coordinates. The return
value is a 4-integer tuple: (left, top, width, height). This tuple can be passed to center() to get the X and Y
coordinates at the center of this region. If the image can’t be found on the screen, locateOnScreen() raises
ImageNotFoundException.

>>> import pyautogui
>>> button7location = pyautogui.locateOnScreen('calc7key.png')
>>> button7location
Box(left=1416, top=562, width=50, height=41)
>>> button7location[0]
1416
>>> button7location.left

(continues on next page)

3.6. Screenshot Functions 19

PyAutoGUI Documentation

(continued from previous page)

1416
>>> button7point = pyautogui.center(button7location)
>>> button7point
Point(x=1441, y=582)
>>> button7point[0]
1441
>>> button7point.x
1441
>>> button7x, button7y = button7point
>>> pyautogui.click(button7x, button7y) # clicks the center of where the 7 button
→˓was found
>>> pyautogui.click('calc7key.png') # a shortcut version to click on the center of
→˓where the 7 button was found

The optional confidence keyword argument specifies the accuracy with which the function should locate the image
on screen. This is helpful in case the function is not able to locate an image due to negligible pixel differences:

>>> import pyautogui
>>> button7location = pyautogui.locateOnScreen('calc7key.png', confidence=0.9)
>>> button7location
Box(left=1416, top=562, width=50, height=41)

Note: You need to have OpenCV installed for the confidence keyword to work.

The locateCenterOnScreen() function combines locateOnScreen() and center():

>>> import pyautogui
>>> x, y = pyautogui.locateCenterOnScreen('calc7key.png')
>>> pyautogui.click(x, y)

On a 1920 x 1080 screen, the locate function calls take about 1 or 2 seconds. This may be too slow for action video
games, but works for most purposes and applications.

There are several “locate” functions. They all start looking at the top-left corner of the screen (or image) and look to
the right and then down. The arguments can either be a

• locateOnScreen(image, grayscale=False) - Returns (left, top, width, height) coordinate of first
found instance of the image on the screen. Raises ImageNotFoundException if not found on the screen.

• locateCenterOnScreen(image, grayscale=False) - Returns (x, y) coordinates of the center of
the first found instance of the image on the screen. Raises ImageNotFoundException if not found on the
screen.

• locateAllOnScreen(image, grayscale=False) - Returns a generator that yields (left, top, width,
height) tuples for where the image is found on the screen.

• locate(needleImage, haystackImage, grayscale=False) - Returns (left, top, width,
height) coordinate of first found instance of needleImage in haystackImage. Raises
ImageNotFoundException if not found on the screen.

• locateAll(needleImage, haystackImage, grayscale=False) - Returns a generator that
yields (left, top, width, height) tuples for where needleImage is found in haystackImage.

The “locate all” functions can be used in for loops or passed to list():

>>> import pyautogui
>>> for pos in pyautogui.locateAllOnScreen('someButton.png')
... print(pos)

(continues on next page)

20 Chapter 3. Fail-Safes

https://pypi.org/project/opencv-python/

PyAutoGUI Documentation

(continued from previous page)

...
(1101, 252, 50, 50)
(59, 481, 50, 50)
(1395, 640, 50, 50)
(1838, 676, 50, 50)
>>> list(pyautogui.locateAllOnScreen('someButton.png'))
[(1101, 252, 50, 50), (59, 481, 50, 50), (1395, 640, 50, 50), (1838, 676, 50, 50)]

These “locate” functions are fairly expensive; they can take a full second to run. The best way to speed them up is to
pass a region argument (a 4-integer tuple of (left, top, width, height)) to only search a smaller region of the screen
instead of the full screen:

>>> import pyautogui
>>> pyautogui.locateOnScreen('someButton.png', region=(0,0, 300, 400))

Grayscale Matching

Optionally, you can pass grayscale=True to the locate functions to give a slight speedup (about 30%-ish). This
desaturates the color from the images and screenshots, speeding up the locating but potentially causing false-positive
matches.

>>> import pyautogui
>>> button7location = pyautogui.locateOnScreen('calc7key.png', grayscale=True)
>>> button7location
(1416, 562, 50, 41)

Pixel Matching

To obtain the RGB color of a pixel in a screenshot, use the Image object’s getpixel() method:

>>> import pyautogui
>>> im = pyautogui.screenshot()
>>> im.getpixel((100, 200))
(130, 135, 144)

Or as a single function, call the pixel() PyAutoGUI function, which is a wrapper for the previous calls:

>>> import pyautogui
>>> pix = pyautogui.pixel(100, 200)
>>> pix
RGB(red=130, green=135, blue=144)
>>> pix[0]
130
>>> pix.red
130

If you just need to verify that a single pixel matches a given pixel, call the pixelMatchesColor() function,
passing it the X coordinate, Y coordinate, and RGB tuple of the color it represents:

>>> import pyautogui
>>> pyautogui.pixelMatchesColor(100, 200, (130, 135, 144))
True
>>> pyautogui.pixelMatchesColor(100, 200, (0, 0, 0))
False

3.6. Screenshot Functions 21

PyAutoGUI Documentation

The optional tolerance keyword argument specifies how much each of the red, green, and blue values can vary
while still matching:

>>> import pyautogui
>>> pyautogui.pixelMatchesColor(100, 200, (130, 135, 144))
True
>>> pyautogui.pixelMatchesColor(100, 200, (140, 125, 134))
False
>>> pyautogui.pixelMatchesColor(100, 200, (140, 125, 134), tolerance=10)
True

3.7 Testing

The unit tests for PyAutoGUI are currently not comprehensive. The tests (in basicTests.py) cover the following:

• onScreen()

• size()

• position()

• moveTo()

• moveRel()

• typewrite()

• PAUSE

3.7.1 Platforms Tested

• Python 3.4, 3.3, 3.2, 3.1, 2.7, 2.6, 2.5

• Windows

• OS X

• Raspberry Pi

(If you have run the unit tests successfully on other platforms, please tell al@inventwithpython.com.)

PyAutoGUI is not compatible with Python 2.4 or before.

The keyboard functions do not work on Ubuntu when run in VirtualBox on Windows.

3.8 Roadmap

PyAutoGUI is planned as a replacement for other Python GUI automation scripts, such as PyUserInput, PyKeyboard,
PyMouse, pykey, etc. Eventually it would be great to offer the same type of features that [Sikuli](http://www.sikuli.org)
offers.

For now, the primary aim for PyAutoGUI is cross-platform mouse and keyboard control and a simple API.

Future features planned (specific versions not planned yet):

• A tool for determining why an image can’t be found in a particular screenshot. (This is a common source of
questions for users.)

22 Chapter 3. Fail-Safes

mailto:al@inventwithpython.com
http://www.sikuli.org

PyAutoGUI Documentation

• Full compatibility on Raspberry Pis.

• “Wave” function, which is used just to see where the mouse is by shaking the mouse cursor a bit. A small helper
function.

• locateNear() function, which is like the other locate-related screen reading functions except it finds the first
instance near an xy point on the screen.

• Find a list of all windows and their captions.

• Click coordinates relative to a window, instead of the entire screen.

• Make it easier to work on systems with multiple monitors.

• GetKeyState() type of function

• Ability to set global hotkey on all platforms so that there can be an easy “kill switch” for GUI automation
programs.

• Optional nonblocking pyautogui calls.

• “strict” mode for keyboard - passing an invalid keyboard key causes an exception instead of silently skipping it.

• rename keyboardMapping to KEYBOARD_MAPPING

• Ability to convert png and other image files into a string that can be copy/pasted directly in the source code, so
that they don’t have to be shared separately with people’s pyautogui scripts.

• Test to make sure pyautogui works in Windows/mac/linux VMs.

• A way to compare two images and highlight differences between them (good for pointing out when a UI changes,
etc.)

Window handling features:

• pyautogui.getWindows() # returns a dict of window titles mapped to window IDs

• pyautogui.getWindow(str_title_or_int_id) # returns a “Win” object

• win.move(x, y)

• win.resize(width, height)

• win.maximize()

• win.minimize()

• win.restore()

• win.close()

• win.position() # returns (x, y) of top-left corner

• win.moveRel(x=0, y=0) # moves relative to the x, y of top-left corner of the window

• win.clickRel(x=0, y=0, clicks=1, interval=0.0, button=’left’) # click relative to the x, y of top-left corner
of the window

• Additions to screenshot functionality so that it can capture specific windows instead of full screen.

3.9 pyautogui

3.9.1 pyautogui package

3.9. pyautogui 23

PyAutoGUI Documentation

Submodules

pyautogui.keynames module

Module contents

This documentation is still a work in progress.

24 Chapter 3. Fail-Safes

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

25

	Examples
	FAQ: Frequently Asked Questions
	Fail-Safes
	Installation
	Cheat Sheet
	Mouse Control Functions
	Keyboard Control Functions
	Message Box Functions
	Screenshot Functions
	Testing
	Roadmap
	pyautogui

	Indices and tables

